Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J. appl. oral sci ; 27: e20180111, 2019. tab, graf
Article in English | LILACS, BBO | ID: biblio-975872

ABSTRACT

Abstract Several anti-proteolytic dentin therapies are being exhaustively studied in an attempt to reduce dentin bond degradation and improve clinical performance and longevity of adhesive restorations. Objectives This study assessed the effect of epigallocatechin-3-gallate (EGCG) on long-term bond strength when incorporated into adhesives. Material and Methods Adhesive systems were formulated with EGCG concentrations of 0 wt%: (no EGCG; control); 0.5 wt% EGCG; 1.0 wt% EGCG, and 1.5 wt% EGCG. Flexural strength (FS), modulus of elasticity (ME), modulus of resilience (MR), compressive strength (CS), degree of conversion (DC), polymerization shrinkage (PS), percentage of water sorption (%WS), percentage of water solubility (%WL) and cytotoxicity properties were tested. Dentin microtensile bond strength (µTBS) was evaluated after 24 h and again after 6 months of water storage. The adhesive interface was analyzed using scanning electron microscopy (SEM). Results No significant differences were found among the groups in terms of FS, ME, MR, CS and PS. EGCG-doped adhesives increased the DC relative to the control group. EGCG concentrations of 1.0 wt% and 0.5 wt% decreased the WS of adhesives. WL decreased in all cases in which EGCG was added to adhesives, regardless of the concentration. EGCG concentrations of 1.0 wt% and 0.5 wt% reduced cytotoxicity. EGCG concentrations of 1.0 wt% and 0.5 wt% preserved µTBS after 6 months of storage, while 1.5 wt% EGCG significantly decreased µTBS. SEM: the integrity of the hybrid layer was maintained in the 0.5 wt% and 1.0 wt% EGCG groups. Conclusion EGCG concentrations of 1.0 wt% and 0.5 wt% showed better biological and mechanical performance, preserved bond strength and adhesive interface, and reduced cytotoxicity.


Subject(s)
Humans , Catechin/analogs & derivatives , Dentin-Bonding Agents/chemistry , Bisphenol A-Glycidyl Methacrylate/chemistry , Methacrylates/chemistry , Reference Values , Solubility , Surface Properties , Tensile Strength , Time Factors , Materials Testing , Camphor/analogs & derivatives , Camphor/chemistry , Water/chemistry , Microscopy, Electron, Scanning , Catechin/toxicity , Catechin/chemistry , Cell Line , Cell Survival/drug effects , Reproducibility of Results , Analysis of Variance , Dentin-Bonding Agents/toxicity , Bisphenol A-Glycidyl Methacrylate/toxicity , Compressive Strength , Dentin/drug effects , Dentin/chemistry , Elastic Modulus , Polymerization , Fibroblasts/drug effects , Flexural Strength , Methacrylates/toxicity
3.
J. appl. oral sci ; 24(4): 338-343, July-Aug. 2016. tab, graf
Article in English | LILACS, BBO | ID: lil-792602

ABSTRACT

ABSTRACT The successful use of composite resins in Dentistry depends on physicochemical properties, but also on the biological compatibility of resins, because of the close association between pulp and dentin. Objective The aim of this study was to evaluate cytotoxicity and cytokine production induced by light-cured or non-light-cured methacrylate-based and silorane composite resins in RAW 264.7 macrophages. Material and Methods Cells were stimulated with the extracts from light-cured or non-light-cured composite resins. After incubation for 24 h, cytotoxicity was assessed with the lactate dehydrogenase (LDH) and methyl thiazolyl tetrazolium (MTT) assays, and total protein was quantified using the Lowry method. TNF-α detection was examined with an enzyme-linked immunosorbent assay (ELISA) conducted with cell supernatants after cell stimulation for 6, 12, and 24 h. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey’s post hoc test (α=0.05). Results KaloreTM and FiltekTM Silorane were cytotoxic with or without light curing (p<0.05) after 24 h of incubation. KaloreTM stimulated the early production of TNF-α in comparison with control (p<0.05), whereas FiltekTM Silorane did not affect TNF-α levels after 6 and 12 h (p>0.05). However, after 24 h FiltekTM Silorane inhibited the production of TNF-α (p<0.05). Conclusions KaloreTM and FiltekTM Silorane were cytotoxic regardless of light curing. The extract obtained from KaloreTM after 15 days of incubation stimulated the production of TNF-α, unlike that obtained from FiltekTM Silorane.


Subject(s)
Animals , Mice , Tumor Necrosis Factor-alpha/analysis , Composite Resins/toxicity , Silorane Resins/toxicity , Methacrylates/toxicity , Reference Values , Time Factors , Materials Testing , Enzyme-Linked Immunosorbent Assay , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , Cells, Cultured , Reproducibility of Results , Composite Resins/radiation effects , Curing Lights, Dental , Silorane Resins/radiation effects , L-Lactate Dehydrogenase , Methacrylates/radiation effects
4.
Braz. dent. j ; 23(4): 344-350, 2012. ilus, tab
Article in English | LILACS | ID: lil-658008

ABSTRACT

This aim of this study was to evaluate the physicochemical and biological properties of novel experimental cements (Hybrid, Paste and Resin) based on synergistic combinations of existing materials, including pH, diametral tensile strength (DTS) and cytotoxicity comparing them with mineral trioxide aggregate (MTA - Angelus®) and a glass ionomer cement (GIC) developed at our laboratory. For the physicochemical and biological tests, specimens with standard dimensions were produced. pH measurements were performed with digital pH meter at the following time intervals: 3, 24, 48 and 72 h. For the DTS test, cylindrical specimens were subjected to compressive load until fracture. The MTT assay was performed for cytotoxicity evaluation. Data were analyzed by ANOVA and Tukey's test (α=0.05). Paste group showed pH values similar to MTA, and Hybrid group presented pH values similar to GIC (p>0.05). The tested materials showed pH values ranging from alkaline to near neutrality at the evaluated times. MTA and GIC showed similar DTS values. The lowest and highest DTS values were seen in the Paste and Resin groups, respectively (p<0.05). Cell viability for MTA and experimental Hybrid, Paste and Resin groups was 49%, 93%, 90% and 86%, respectively, when compared with the control group. The photo-cured experimental resin cement showed similar or superior performance compared with the current commercial or other tested experimental materials.


O objetivo deste estudo foi avaliar propriedades físico-químicas e biológicas de novos cimentos experimentais (Híbrido, Pasta e Resinoso) baseado na combinação sinérgica de materiais existentes, incluindo pH, resistência à tração diametral (RTD) e citotoxidade, comparando-os ao MTA (Angelus®) e a um cimento de ionômero de vidro (CIV) desenvolvido em nosso laboratório. Para a realização dos testes físico-mecânico e biológico, foram confeccionados espécimes com dimensões padrão. O teste de pH foi realizado por meio de pH-metro digital nos tempos: 3, 24, 48 e 72 h. Para o teste de RTD, espécimes cilíndricos foram submetidos a carga compressiva até sua fratura. Para avaliação da citotoxidade, utilizou-se o teste MTT. Os dados foram analisados utilizando ANOVA e teste de Tukey (α=0,05). O grupo Pasta apresentou valores de pH semelhantes ao MTA, assim como o grupo Híbrido seguiu os parâmetros do CIV (p>0,05). Todos os materiais apresentaram valores de pH alcalinos ou próximosà neutralidade nos tempos avaliados. MTA e CIV apresentaram valores de RTD similares. Os menores e maiores valores observados foram do grupo Pasta e Resinoso, respectivamente (p<0,05). A viabilidade celular para os grupos MTA, Híbrido, Pasta, Resinoso, quando comparados ao grupo controle foi de: 49, 93, 90 e 86%, respectivamente. O cimento experimental Resinoso apresentou desempenho similar ou superior aos materiais comerciais e experimentais avaliados.


Subject(s)
Animals , Mice , Dental Cements/chemistry , Pulp Capping and Pulpectomy Agents/chemistry , Aluminum Compounds/chemistry , Aluminum Compounds/toxicity , Biocompatible Materials/chemistry , Bismuth/chemistry , Bismuth/toxicity , Chemical Phenomena , Calcium Compounds/chemistry , Calcium Compounds/toxicity , Cell Survival/drug effects , Composite Resins/chemistry , Composite Resins/toxicity , Drug Combinations , Dental Cements/toxicity , Fibroblasts/drug effects , Glass Ionomer Cements/chemistry , Glass Ionomer Cements/toxicity , Hydrogen-Ion Concentration , Light-Curing of Dental Adhesives , Materials Testing , Methacrylates/chemistry , Methacrylates/toxicity , Oxides/chemistry , Oxides/toxicity , Polyethylene Glycols/chemistry , Polyethylene Glycols/toxicity , Polymethacrylic Acids/chemistry , Polymethacrylic Acids/toxicity , Polyurethanes/chemistry , Polyurethanes/toxicity , Pulp Capping and Pulpectomy Agents/toxicity , Resin Cements/chemistry , Resin Cements/toxicity , Self-Curing of Dental Resins , Stress, Mechanical , Silicates/chemistry , Silicates/toxicity , Tensile Strength , Time Factors
5.
Braz. j. med. biol. res ; 44(11): 1125-1133, Nov. 2011. ilus
Article in English | LILACS | ID: lil-604277

ABSTRACT

Antibacterial monomers incorporated in dentin bonding systems may have toxic effects on the pulp. Thus, the cytotoxicity of antibacterial monomers and its underlying mechanisms must be elucidated to improve the safety of antibacterial monomer application. The influence of an antibacterial monomer, methacryloxylethyl cetyl ammonium chloride (DMAE-CB), on the vitality of L929 mouse fibroblasts was tested using MTT assay. Cell cycle progression was studied using flow cytometry. Production of intracellular reactive oxygen species (ROS) after DMAE-CB treatment was measured using 2,7-dichlorodihydrofluorescein diacetate staining and flow cytometry analysis. Loss of mitochondrial membrane potential, disturbance of Bcl-2 and Bax expression, as well as release of cytochrome C were also measured using flow cytometry analysis or Western blot to explore the possible involvement of the mitochondrial-related apoptotic pathway. DMAE-CB elicited cell death in a dose-dependent manner and more than 50 percent of cells were killed after treatment with 30 µM of the monomer. Both necrosis and apoptosis were observed. DMAE-CB also induced G1- and G2-phase arrest. Increased levels of intracellular ROS were observed after 1 h and this overproduction was further enhanced by 6-h treatment with the monomer. DMAE-CB may cause apoptosis by disturbing the expression of Bcl-2 and Bax, reducing the mitochondrial potential and inducing release of cytochrome C. Taken together, these findings suggest that the toxicity of the antibacterial monomer DMAE-CB is associated with ROS production, mitochondrial dysfunction, cell cycle disturbance, and cell apoptosis/necrosis.


Subject(s)
Animals , Mice , Anti-Bacterial Agents/toxicity , Apoptosis/drug effects , Dentin-Bonding Agents/toxicity , Methacrylates/toxicity , Mitochondria/drug effects , Oxidative Stress/drug effects , Quaternary Ammonium Compounds/toxicity , Analysis of Variance , Fibroblasts/drug effects , Models, Animal , Reactive Oxygen Species/metabolism , Statistics, Nonparametric
6.
Braz. dent. j ; 22(2): 105-110, 2011. ilus, graf
Article in English | LILACS | ID: lil-583797

ABSTRACT

The aim of this study was to evaluate the tissue compatibility of a silorane-based resin system (FiltekTM Silorane) and a methacrylate-based nanoparticle resin (FiltekTM Supreme XT) after implantation in the subcutaneous connective tissue of isogenic mice. One hundred and thirty five male isogenic BALB/c mice were randomly assigned to 12 experimental and 3 control groups, according to the implanted material and the experimental period of 7, 21 and 63 days. At the end of each period, the animals were killed and the tubes with the surrounding tissues were removed and processed for microscopic analysis. Samples were subjected to a descriptive and a semi-quantitative analyses using a 4-point scoring system (0-3) to evaluate the collagen fiber formation and inflammatory infiltrate. Data were statistically analyzed using the Kruskal Wallis test (?=0.05). The results showed that there was no significant difference between the experimental and control groups considering the three evaluation periods (p>0.05). The silorane-based and the methacrylate-based nanoparticle resins presented similar tissue response to that of the empty tube (control group) after subcutaneous implantation in isogenic mice.


O objetivo do presente estudo foi avaliar a compatibilidade tecidual de um sistema resinoso à base de silorane (FiltekTM Silorane) e de uma resina nanoparticulada à base de metacrilato (FiltekTM Supreme XT), após implantação no tecido conjuntivo subcutâneo de camundongos isogênicos. Um total de 135 camundongos isogênicos BALB/c machos foram randomicamente divididos em 12 grupos experimentais e em 3 grupos controles, de acordo com o material implantado e com o período experimental (7, 21 e 63 dias). Ao final de cada período, os animais foram mortos, sendo os tubos removidos com o tecido circundante e processados para análise microscópica. As lâminas foram submetidas a análise descritiva e análise semi-quantitativa empregando um sistema de escores de 4 pontos (0-3), a fim de avaliar a formação de fibras colágenas e o infiltrado inflamatório. Os dados obtidos foram submetidos à análise estatística por meio do teste de Kruskal Wallis (?=0,05). Os resultados mostraram que não houve diferença estatisticamente significante entre os grupos experimentais e controles, considerando os três períodos de avaliação (p>0,05). As resinas à base de silorane e à base de metacrilato apresentaram resposta tecidual semelhante à do tubo vazio (controle), após implantação no tecido conjuntivo de camundongos isogênicos.


Subject(s)
Animals , Male , Mice , Composite Resins/toxicity , Siloxanes/toxicity , Subcutaneous Tissue/drug effects , Composite Resins/chemistry , Foreign-Body Reaction , Fibrillar Collagens/biosynthesis , Implants, Experimental , Materials Testing , Mice, Inbred BALB C , Methacrylates/toxicity , Random Allocation
7.
Camaragibe; s.n; jan. 2010. 115 p. ilus.
Thesis in Portuguese | LILACS, BBO | ID: lil-605442

ABSTRACT

Este estudo, apresentado na forma de três artigos científicos, teve como objetivo geral avaliar o potencial de citotoxidade dos adesivos Adper Single Bond Plus (SB), Clearfil SE Bond (CF) e Xeno V (XE), observando-se a produção de óxido nítrico (NO) e taxa de sobrevivência celular (MTT assay) de macrófagos alveolares de ratos Wistar.


The main goal of this study, presented as three papers, was to evaluate the potencytotoxicity of Adper Plus Single Bond (SB), Clearfil SE Bond (CF), and Xeno V (XE) adhesives, by observing the production of nitric oxide (NO) and rate of cell survival (MTT assay) of aveolar macrophages from rats...


Subject(s)
Dentin-Bonding Agents/toxicity , Macrophages , Methacrylates/toxicity
8.
Braz. dent. j ; 20(3): 195-200, 2009. ilus, graf
Article in English | LILACS | ID: lil-526410

ABSTRACT

The purpose of this study was to evaluate the potential cytotoxicity of Adper Single Bond 2 (SB) simplified etch-and-rinse adhesive system in alveolar macrophage cultures, as a function of the post-polymerization time and duration of immersion in the culture medium for preparation of extracts, by observing the levels of nitric oxide (NO) release and cell survival rate (MTT assay). Wistar rat alveolar macrophages were exposed to 200 μL of extracts obtained from 24- or 72-h immersion of adhesive samples in culture medium (RPMI), immediately or 24 h after polymerization. Fresh RPMI and E. coli lipopolysaccharides were used as negative and positive controls, respectively. The cells were placed in a humidified incubator for 24 h. The results were analyzed by the Student's-t test (α=5 percent). The amount of NO produced and viable cells were significantly different (p<0.05) between the experimental and the control groups, showing that, irrespective of the post-polymerization time and duration of immersion in the culture medium, the adhesive system caused intense cytotoxicity to the macrophages. The cytotoxic effects were not statistically different (p<0.05) among the experimental groups. In conclusion, chemical components released from SB in aqueous environment were highly toxic to cell culture and thus an inflammatory pulpal response should be considered during the clinical application of dental adhesives.


O objetivo deste estudo foi avaliar o potencial de citotoxicidade do sistema adesivo Adper Single Bond 2 (SB), em função dos tempos pós-polimerização e imersão no meio de cultura para preparação dos extratos, observando-se os níveis de liberação de óxido nítrico (NO) e taxa de sobrevivência celular (MTT assay). Macrófagos alveolares de ratos Wistar foram expostos a 200 μL de extratos obtidos a partir da imersão de amostras do adesivo em meio de cultura (RPMI), imediatamente ou 24 h após sua polimerização, onde permaneceram durante 24 ou 72 h. RPMI puro e lipopolissacarídeos de E. coli foram utilizados como controles negativo e positivo, respectivamente. As células foram levadas à incubadora umidificada por 24 h. Os resultados foram submetidos ao teste "t" de Student (α=5 por cento). As quantidades de NO produzido e células sobreviventes foram significativamente diferentes entre os grupos experimentais e grupos controle, mostrando que, independente do tempo pós-polimerização e tempo de elaboração dos extratos, o sistema adesivo causou uma intensa citotoxicidade sobre os macrófagos. Os efeitos citotóxicos não foram estatisticamente diferentes entre os grupos experimentais. Componentes químicos do SB liberados em meio aquoso podem ser altamente citotóxicos para as células em cultura e, portanto, uma resposta inflamatória pulpar deve ser considerada durante a aplicação clínica de adesivos dentinários.


Subject(s)
Animals , Male , Rats , Dentin-Bonding Agents/toxicity , Macrophages, Alveolar/drug effects , Methacrylates/toxicity , Cell Survival , Cells, Cultured , Dental Materials/toxicity , Macrophages, Alveolar/cytology , Macrophages, Alveolar/metabolism , Nitric Oxide/metabolism , Rats, Wistar
9.
Indian J Physiol Pharmacol ; 2007 Oct-Dec; 51(4): 405-9
Article in English | IMSEAR | ID: sea-106786

ABSTRACT

Methacrylonitrile (MeAN) is a plastic monomer. Its effect on membrane bound enzymes like Na+K+ -ATPase, Ca2+ -ATPase, Mg2+ -ATPase, NADH dehydrogenase, alkaline phosphatase (ALP) and various elements like sodium (Na+), potassium (K+), and calcium (Ca2+) in rat brain were studied. Administration of 50 mg/kg body weight/day (0.25 LD50) and 100 mg/kg body weight/day (0.5 LD50) by gavage to rats for 7 days resulted in a significant decrease in activities of Na+K+ -ATPase, Ca2+ -ATPase, Mg2+ -ATPase, and NADH dehydrogenase. A significant reduction in calcium content, potassium content and a significant increase in sodium content and alkaline phosphatase activity in MeAN treated animals were observed. Inhibition of membrane bound enzymes occurred due to either direct effect of MeAN or indirect effect of changes in ionic homeostasis in MeAN treated animals.


Subject(s)
Alkaline Phosphatase/metabolism , Animals , Brain/drug effects , Ca(2+) Mg(2+)-ATPase/antagonists & inhibitors , Calcium-Transporting ATPases/metabolism , Cell Membrane/enzymology , Male , Methacrylates/toxicity , NADH Dehydrogenase/antagonists & inhibitors , Nitriles/toxicity , Rats , Rats, Wistar , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors
10.
Indian J Biochem Biophys ; 1997 Dec; 34(6): 540-2
Article in English | IMSEAR | ID: sea-26550

ABSTRACT

MeAN administration (40mg/kg body wt/day (i.e. 1/5 of LD50) resulted in increased levels of lipid peroxidation products, conjugated dienes and lipofuscin-like substances in rat liver. Significant decrease in GSH and a decreased activity of hepatic SOD, CAT and GPx were observed. There was also an increase in glutathione S-transferase and G6PD activities, decreased plasma ceruloplasmin and vitamin C implying oxidative stress caused by MeAN.


Subject(s)
Animals , Antioxidants/metabolism , Glutathione/metabolism , Lipid Peroxidation/drug effects , Lipofuscin/metabolism , Liver/drug effects , Male , Methacrylates/toxicity , Nitriles/toxicity , Oxidative Stress/drug effects , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL